Separation of Relatively Quasiconvex Subgroups

نویسندگان

  • JASON FOX MANNING
  • E. MARTÍNEZ-PEDROZA
چکیده

Suppose that all hyperbolic groups are residually finite. The following statements follow: In relatively hyperbolic groups with peripheral structures consisting of finitely generated nilpotent subgroups, quasiconvex subgroups are separable; Geometrically finite subgroups of non-uniform lattices in rank one symmetric spaces are separable; Kleinian groups are subgroup separable. We also show that LERF for finite volume hyperbolic 3–manifolds would follow from LERF for closed hyperbolic 3–manifolds. The method is to reduce, via combination and filling theorems, the separability of a quasiconvex subgroup of a relatively hyperbolic group G to the separability of a quasiconvex subgroup of a hyperbolic quotient Ḡ. A result of Agol, Groves, and Manning is then applied.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combination of Quasiconvex Subgroups of Relatively Hyperbolic Groups

For relatively hyperbolic groups, we investigate conditions under which the subgroup generated by two quasiconvex subgroups Q1 and Q2 is quasiconvex and isomorphic to Q1 ∗Q1∩Q2 Q2. Our results generalized known combination theorems for quasiconvex subgroups of word-hyperbolic groups. Some applications are presented. In addition, it is proved that the intersection of quasiconvex subgroups is qua...

متن کامل

A Note on Quasiconvexity and Relative Hyperbolic Structures

Let G be a group which is hyperbolic relative to a collection of subgroups H1, and it is also hyperbolic relative to a collection of subgroups H2. Suppose that H2 ⊂ H1. We characterize, for subgroups of G, when quasiconvexity relative to H1 implies quasiconvexity relative to H2. We also show that quasiconvexity relative toH2 implies quasiconvexity relative toH1. As an application, we give some ...

متن کامل

Mathematics on Quasiconvex Subsets of Hyperbolic Groups

A geodesic metric space X is called hyperbolic if there exists δ ≥ 0 such that every geodesic triangle ∆ in X is δ-slim, i.e., each side of ∆ is contained in a closed δ-neighborhood of the two other sides. Let G be a group generated by a finite set A and let Γ(G,A) be the corresponding Cayley graph. The group G is said to be word hyperbolic if Γ(G,A) is a hyperbolic metric space. A subset Q of ...

متن کامل

The universal relatively hyperbolic structure on a group and relative quasiconvexity for subgroups

We discuss the notion of the universal relatively hyperbolic structure on a group which is used in order to characterize relatively hyperbolic structures on the group. We also study relations between relatively hyperbolic structures on a group and relative quasiconvexity for subgroups of the group.

متن کامل

Separable Subsets of Gferf Negatively Curved Groups

A word hyperbolic group G is called GFERF if every quasiconvex subgroup coincides with the intersection of finite index subgroups containing it. We show that in any such group, the product of finitely many quasiconvex subgroups is closed in the profinite topology on G.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008